Nonconvex Robust Optimization for Problems with Constraints

نویسندگان

  • Dimitris Bertsimas
  • Omid Nohadani
  • Kwong Meng Teo
چکیده

W propose a new robust optimization method for problems with objective functions that may be computed via numerical simulations and incorporate constraints that need to be feasible under perturbations. The proposed method iteratively moves along descent directions for the robust problem with nonconvex constraints and terminates at a robust local minimum. We generalize the algorithm further to model parameter uncertainties. We demonstrate the practicability of the method in a test application on a nonconvex problem with a polynomial cost function as well as in a real-world application to the optimization problem of intensity-modulated radiation therapy for cancer treatment. The method significantly improves the robustness for both designs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nonconvex Robust Optimization

We propose a novel robust optimization technique, which is applicable to nonconvex and simulation-based problems. Robust optimization finds decisions with the best worst-case performance under uncertainty. If constraints are present, decisions should also be feasible under perturbations. In the real-world, many problems are nonconvex and involve computer-based simulations. In these applications...

متن کامل

An Efficient Neurodynamic Scheme for Solving a Class of Nonconvex Nonlinear Optimization Problems

‎By p-power (or partial p-power) transformation‎, ‎the Lagrangian function in nonconvex optimization problem becomes locally convex‎. ‎In this paper‎, ‎we present a neural network based on an NCP function for solving the nonconvex optimization problem‎. An important feature of this neural network is the one-to-one correspondence between its equilibria and KKT points of the nonconvex optimizatio...

متن کامل

Hidden convexity in partially separable optimization

The paper identifies classes of nonconvex optimization problems whose convex relaxations have optimal solutions which at the same time are global optimal solutions of the original nonconvex problems. Such a hidden convexity property was so far limited to quadratically constrained quadratic problems with one or two constraints. We extend it here to problems with some partial separable structure....

متن کامل

An efficient improvement of the Newton method for solving nonconvex optimization problems

‎Newton method is one of the most famous numerical methods among the line search‎ ‎methods to minimize functions. ‎It is well known that the search direction and step length play important roles ‎in this class of methods to solve optimization problems. ‎In this investigation‎, ‎a new modification of the Newton method to solve ‎unconstrained optimization problems is presented‎. ‎The significant ...

متن کامل

A Robust Knapsack Based Constrained Portfolio Optimization

Many portfolio optimization problems deal with allocation of assets which carry a relatively high market price. Therefore, it is necessary to determine the integer value of assets when we deal with portfolio optimization. In addition, one of the main concerns with most portfolio optimization is associated with the type of constraints considered in different models. In many cases, the resulted p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • INFORMS Journal on Computing

دوره 22  شماره 

صفحات  -

تاریخ انتشار 2010